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ABSTRACT

Growth of a multiple antibiotic—resistant strain (ATCC 700408) of Salmonella Typhimurium definitive phage type 104
(DT104) from a low initial density (10%® most probable number [MPN] or CFU/g) on ground chicken breast meat with a
competitive microflora was investigated and modeled as a function of time and temperature (10 to 40°C). MPN and viable
counts (CFU) on a selective medium with four antibiotics enumerated the pathogen. Data from five replicate challenge studies
per temperature were combined and fit to a primary model to determine maximum specific growth rate (), maximum pop-
ulation density (N,,), and the 95% prediction interval (PI). Nonlinear regression was used to obtain secondary models as a
function of temperature for W, Ny, and PI, which ranged from 0.04 to 0.4 h~1, 1.6 to 9.4 log MPN or CFU/g, and 1.4 to
2.4 log MPN or CFU/g, respectively. Secondary models were combined with the primary model to create a tertiary model for
predicting variation (95% PI) of pathogen growth among batches of ground chicken breast meat with a competitive microflora.
The criterion for acceptable model performance was that 90% of observed MPN or CFU data had to be in the 95% PI predicted
by the tertiary model. For data (n = 344) used in model development, 93% of observed MPN and CFU data were in the 95%
PI predicted by the tertiary model, whereas for data (» = 236) not used in model development but collected using the same
methods, 94% of observed MPN and CFU data were in the 95% PI predicted by the tertiary model. Thus, the tertiary model
was successfully verified against dependent data and validated against independent data for predicting variation of Salmonella
Typhimurium DT104 growth among batches of ground chicken breast meat with a competitive microflora and from a low

initial density.

In a survey conducted by the Food Safety and Inspec-
tion Service (FSIS) of the U.S. Department of Agriculture,
45% of retail ground chicken samples (25 g) were contam-
inated with Salmonella with an average density of 100!
most probable number (MPN) per g (7). Rose et al. (42)
estimate that the probability of infection from one cell of
Salmonella is 7.5 X 1073 and that the probability of death
from one cell is 7.5 X 10-°, Considering that ground chick-
en is usually cooked thoroughly before serving, risk of sal-
monellosis is considered to be low (/). However, exposure
of ground chicken to temperatures (e.g., 10 to 40°C) that
support growth of Salmonella could result in rapid growth
of a single pathogen cell to levels that pose a significant
risk of illness.

Although models exist for predicting growth of Sal-
monella on ground chicken incubated at temperatures that
support growth of the pathogen, these models were devel-
oped with a high initial density (N, > 103> CFU/g) of the
pathogen (34, 35, 37, 38). Recent findings (37) indicate that
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a model developed with data from challenge studies con-
ducted with a high initial density (1038 CFU/g) is not a
good predictor of Salmonella growth from a lower (1008
CFU/g) initial density, as only 2.5% of model predictions
were acceptable. Of note, the model predicted much less
growth of Salmonella from the lower initial density than
was observed (37). Thus, there is a need to develop a pre-
dictive model for growth of Salmonella from a lower initial
density (i.e., <10' CFU/g) so that chicken processors can
more accurately assess the safety of ground chicken that
has been exposed to temperatures that support growth of
the pathogen.

Another limitation of most current models is that they
were developed with sterile broth (17, 32, 44) or sterile
ground chicken (30, 31, 34, 35, 37, 38) and thus, effects of
competitive microflora on growth of Salmonella are not ac-
counted for in predictions made by the models. This is im-
portant because the competitive microflora has been shown
to suppress growth of Salmonella during incubation of food
samples in isolation broths (5, 41, 43). Thus, a model de-
veloped without competitive microflora would predict
much more growth of Salmonella on ground chicken with
a competitive microflora than would actually occur. This
would result in an overly fail-safe prediction of Salmonella
growth and the risk of salmonellosis.
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In a previous study (39), a multiple antibiotic—resistant
(MAR) strain of Salmonella Typhimurium definitive phage
type 104 (DT104) was used to successfully investigate and
model (i.e., primary and secondary modeling) growth of
the pathogen from a high initial density (103-% CFU/g) on
ground chicken breast meat with a competitive microflora.
However, the tertiary model developed did not provide ac-
ceptable predictions of Salmonella growth because it could
not predict the observed variation of pathogen growth
among batches of ground chicken breast meat with a com-
petitive microflora (39). Therefore, the current study with
the same strain (ATCC 700408) of Salmonella Typhimu-
rium DT104 was undertaken to develop and validate a ter-
tiary model for predicting variation of pathogen growth
among batches of ground chicken breast meat with a com-
petitive microflora and from a lower initial density (i.e.,
1096 MPN or CFU/g).

MATERIALS AND METHODS

Salmonella. A MAR strain (ATCC 700408, American Type
Culture Collection, Manassas, Va.) of Salmonella Typhimurium
DT104 was used for model development and validation. Stock
cultures were maintained at —70°C in brain heart infusion (BHI)
broth (Becton Dickinson, Sparks, Md.) that contained 15% glyc-
erol (Sigma, St. Louis, Mo.).

Ground chicken breast meat. Boneless chicken breast meat
was purchased weekly from local retail outlets. The meat was
ground (Y-in. plate) using an electric meat grinder (The Sausage
Maker, Buffalo, N.Y.) and divided into portions (1 g) for challenge
studies.

Inoculum culture. On a weekly basis, stationary-phase cells
for inoculation of chicken portions were prepared by adding stock
culture (5 pl) to BHI broth (5 ml) in a 25-ml Erlenmeyer flask
sealed with a foam plug followed by incubation at 30°C and 150
orbits per min for 23 h. Immediately before inoculation, inoculum
cultures were serially diluted in buffered peptone water (BPW;
Becton Dickinson) to a final concentration of 103-3 CFU/ml.

Challenge study. Diluted culture (10-7) was inoculated (2
wl) onto chicken portions for an initial density of 1096 MPN or
CFU/g. Inoculated portions were incubated at 10, 12, 14, 22, 30
and 40°C for model development and at 11, 18, 26, and 34°C for
model validation. At selected times of incubation, a portion (1 g)
was homogenized (model 80 stomacher blender, Seward, London,
UK) in BPW (9 ml) for determination of pathogen density. Five
replicate challenge studies, each with a different batch of ground
chicken portions (12 portions per replicate) and different inoculum
cultures were conducted per temperature.

Pathogen enumeration. At time zero, pathogen density (log
CFU per gram) was calculated based on the viable count (CFU),
dilution (10-7), and volume (2 wl) of culture used for inoculation.
During incubation and when a chicken portion was expected to
have a pathogen density between 0 and 103-28/g, a 3 X 4 MPN
assay was used for enumeration. The MPN assay was prepared in
BPW followed by incubation for 24 h at 38°C before 2 pl from
each of the 12 dilution tubes and 2 pl from the remaining sto-
machate in the stomacher bag were spot inoculated onto xylose
lysine (XL) agar medium (Becton Dickinson) that contained 25
mM N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid] or
HEPES (H; Sigma) and 25 pg/ml of the following antibiotics
from Sigma: chloramphenicol (C), ampicillin (A), tetracycline (T)
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and streptomycin (S); hereafter, referred to as XLH-CATS. After
incubation of the XLH-CATS plates at 38°C for 24 h, a black
colony formed within the inoculation areas for each positive di-
lution tube, whereas inoculation areas for negative dilution tubes
were clear with no signs of microbial growth.

The method reported by Thomas (45) was used to calculate
the MPN. This method produces results similar to MPN tables
but has the advantage of allowing MPN determinations from assay
designs, such as the one used in the present study, with an ar-
rangement of tubes that differs from those found in MPN tables.
The MPN was calculated using the following equation:

MPN/g = PIN/N X T

where P was the number of positive tubes, N was the total amount
of sample (g) in all negative tubes, and T was the total amount
of sample (g) in all tubes (45). For example, for an MPN assay
result of 3-1-0-0:

P=3+1+0+0=4
N = [(0.1 X 0) + (0.01 X 2) + (0.001 X 3)
+ (0.0001 X 3)] = 0.0233 g
T= 3X (0.1 +0.01 + 0001 + 0.0001) = 0.3333 g
MPN/g = 4/V0.0233 X 0.3333 = 45 or 10165 MPN/g

When the MPN assay result was 0-0-0-0 and the bag was positive
for Salmonella, this indicated that pathogen density was greater
than 0 but less than 10935 MPN/g, which corresponded to an assay
result of 1-0-0-0. In this situation, it was assumed that pathogen
density was 109275 MPN/g. When the MPN assay result was 0-
0-0-0 and the bag was negative for Salmonella, this indicated that
pathogen density was 0 MPN/g.

During incubation and when the inoculated chicken portion
was expected to have a pathogen density greater than 103/g, direct
plating on XLH-CATS was used for enumeration. Stomachate was
serially diluted in BPW and then 50 wl was spiral plated (Whitley
Automatic Spiral Plater, Microbiology International, Frederick,
Md.) onto XLH-CATS in duplicate. Spiral plates were incubated
at 38°C for 24 h before automated counting of colonies (ProtoCol,
Microbiology International).

Primary modeling. Calculated log CFU at time zero, and
log MPN and log CFU data for pathogen density at times greater
than zero, and from all five replicate challenge studies per tem-
perature were combined, graphed as a function of time and fit
(Prism version 4.0, GraphPad Software, San Diego, Calif.) to the
following primary model:

N@) = ]vmax/{1 + [(Nmax/NO) - I]CXP(_M X t)}

which was obtained from the logistic with delay model (2) and
where N(t) was pathogen density (log MPN or CFU per gram) at
time 7 (h), Ny Was maximum population density (log MPN or
CFU per gram), N, was initial density (log MPN or CFU per
gram), and p. was maximum specific growth rate (h~'). In addi-
tion, a 95% prediction interval (PI) for pathogen density (log
MPN or CFU per gram) was obtained for each growth curve (25).
The 95% PI quantified variation of pathogen growth among batch-
es of ground chicken breast meat with a competitive microflora.

Secondary modeling. Secondary models were fit to growth
parameter data from primary modeling using the Prism software
program. The best-fit values of w from primary modeling were
graphed as a function of temperature (7, °C) and were fit to the
following secondary model:
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which was identical to the logistic with delay model (2) but with
different parameter names: ; (h~1) was initial predicted p for the
growth conditions studied, 7y was the temperature at which . was
predicted to increase, fop (h™!) was optimal predicted ., and iy
(h~1/°C) was the maximum predicted rate of increase of w as a
function of temperature.

Best-fit values for N,,,, from primary modeling were graphed
as a function of temperature and were fit to the following sec-
ondary model:

Nmax = eXP{(a[(T - Tmin)/(T - Tsubmin)])}

which was obtained from the asymptote model (50) and where a
was a regression coefficient, 7,,;, was the minimum predicted
growth temperature, and T,pmin Was a predicted temperature be-
low Tprip-

Ninety-five-percent prediction intervals (PI) from primary
modeling were graphed as a function of temperature and were fit
to the following four-phase linear secondary model:

7> T,

PI, if T<T,
PI, + [(PL, — PIDAT, — TOIT —T,) ifT,<T=T,

- PL; + [(PL, — PIOAT, — TOIT — Ty) T, <T=T;
PI, T, <T

which was obtained from the three-phase linear model (8) and
where PI;, PL,, and PI; were predicted PI at predicted tempera-
tures T, T,, and T3, respectively. To obtain model convergence,
T, was constrained to 10°C, which was the lowest temperature
investigated. To reduce the size of 95% confidence intervals for
PI;, PL,, and Pl3, 7, and 73 were constrained to fit values after
the first round of nonlinear regression (26). The purpose of the
secondary model for PI was to allow the tertiary model to predict
the 95% PI around the predicted growth curve for temperatures
within the range (10 to 40°C) used in model development.

The maximum time of sampling ({)) at each temperature was
graphed as a function of temperature and fit to the following re-
verse two-phase linear secondary model:

ifT=7T,

‘Q'min
O =
Qmin + [Qrate(T - Td)] itT < T,

which was obtained from the three-phase linear model (8) and
where €),;, was the minimum predicted (), T, was the predicted
temperature at which () stopped decreasing, and ). was the
predicted linear rate of decrease of () from 10°C, which was the
lowest temperature investigated, to 7,;. The purpose of the sec-
ondary model for ) was to prevent predictions of pathogen
growth in the tertiary model that were beyond sampling times
used in model development or beyond sampling times where
growth was observed.

Performance of secondary models was evaluated using the
acceptable prediction zone method (37, 38). Relative errors (RE)
for individual prediction cases were calculated:

RE for w and N,,,, = (observed — predicted)/predicted

RE for PI = (predicted — observed)/predicted

such that RE of less than O represented fail-safe predictions and
RE greater than O represented fail-dangerous predictions. Model
performance (prediction bias and accuracy) was quantified using
the percentage of RE (% RE) in an acceptable prediction zone
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that was twice as wide in the fail-safe direction as in the fail-
dangerous direction (37, 38). The criterion for acceptable model
performance was that 70% of RE had to be in the acceptable
prediction zone (37, 38). Widths of the acceptable prediction
zones are based on an assessment of experimental error associated
with determining individual growth parameters (37). Width of the
acceptable prediction zone for evaluation of model performance
is —0.3 to 0.15 for p and —0.8 to 0.4 for N, and PI (37).

Tertiary modeling. Secondary models for w, N, PL, and
) were combined with the primary model in a computer spread-
sheet (Excel 2000, Microsoft Corporation, Redman, Wash.) to cre-
ate a tertiary model (37). The tertiary model predicted variation
(95% PI) of Salmonella Typhimurium DT104 growth from a low
initial density (106 MPN or CFU/g) on ground chicken breast
meat with a competitive microflora as a function of time and tem-
perature (10 to 40°C). Outputs of the tertiary model were a pre-
dicted growth curve, its 95% PI, and minimum, most likely, and
maximum predicted pathogen density for a specified time. The
95% PI was expected to contain 95% of all future MPN and CFU
data collected using the same methods (25).

Predictions of the tertiary model were verified by comparison
with MPN and CFU data used in model development (dependent
data), whereas predictions of the tertiary model were validated by
comparison with MPN and CFU data not used in model devel-
opment (independent data) (38). The criterion used for model ver-
ification and validation was that 90% of observed MPN or CFU
data had to be in the 95% PI predicted by the tertiary model. As
stated above, one would expect 95% of future MPN and CFU
data to be in the predicted 95% PI (25). Applying the accepted
criterion in statistics that a 5% probability of incorrectly rejecting
the null hypothesis is acceptable; then the 90% acceptable crite-
rion was calculated as 95% PI X (100% — 5%) or 95% PI X
95% = 90.25%, which was rounded to 90%. Thus, if the tertiary
model predictions had 90% concordance with the observed MPN
and CFU data, the tertiary model was classified as acceptable.

Independent data for validation of the tertiary model were
collected in five replicate challenge studies conducted at temper-
atures (11, 18, 26, and 34°C) that were intermediate to those (10,
12, 14, 22, 30, and 40°C) used in model development. The ex-
perimental and modeling methods used to collect MPN and CFU
data for model development were also used to collect independent
MPN and CFU data for model validation so as not to confound
comparison of observed and predicted values (38). Moreover, the
independent data provided good coverage of the response surface
in dimensions of both time and temperature and thus, provided a
proper test of the ability of the tertiary model to predict variation
of Salmonella Typhimurium DT104 growth within its entire re-
sponse surface (38).

RESULTS AND DISCUSSION

To model variation of Salmonella Typhimurium DT104
growth on ground chicken breast meat with a competitive
microflora and from a low initial density (10°¢ MPN or
CFU/g), both MPN and CFU methods were used. Agree-
ment between these methods was compared for eight sam-
ples that were in the overlap region of the two assays. The
MPN assay had a range from 0 to 103-28 MPN/g, whereas
the CFU assay had a lower range of 103 CFU/g. On aver-
age, for the comparative samples, the MPN assay indicated
a lower (P = 0.03; paired Student’s 7 test in Excel) path-
ogen density than the CFU assay with a mean difference
of 0.27 log MPN or CFU/g (Table 1). Thus, using both
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TABLE 1. Comparison of most probable number (MPN) and vi-
able counts (CFU) among samples of ground chicken breast meat
inoculated with Salmonella Typhimurium DT104 (10%6 MPN or
CFU/g) and incubated for selected times at 11 to 40°C

Sample Temp (°C) Time (h) Log MPN/g Log CFU/g

1 11 175.9 3.28 3.08
2 14 38.7 3.09 3.30
3 14 68.0 3.28 3.38
4 26 8.7 2.95 3.65
5 26 9.7 3.28 3.66
6 30 6.0 2.95 3.00
7 30 6.8 3.00 3.51
8 40 4.4 3.09 3.56

Mean 3.12 3.39

methods to quantify Salmonella Typhimurium DT104 in-
troduced some experimental error into the modeling pro-
cess. However, it could not be avoided because the objec-
tive was to investigate and model growth of the pathogen
from an initial density (10°¢ MPN or CFU/g) that was be-
low the detection limit (10® CFU/g) of the CFU assay to a
pathogen density that was above the upper limit (10328
MPN/g) of the MPN assay.

The maximum time of sampling ({)) decreased as a
function of temperature as planned (Fig. 1). However, there
was considerable scatter in the data because () was not
precisely controlled. To produce a conservative model for
prediction of ) in the tertiary model, only data points at
11, 12, 22, and 34°C were included in the final fit. A sec-
ondary model for ) was needed for predicting growth of
Salmonella Typhimurium DT104 because when ground
chicken breast meat with a competitive microflora was in-
cubated for extended time and spoiled, reductions in path-
ogen density were observed (data not shown). Thus, it was
important to develop a tertiary model with a secondary
model for ) that did not allow predictions for times of
storage beyond those used in model development or beyond
those where growth was observed. Parameters of secondary
models for ), PI, w, and Ny, and their 95% confidence
intervals are presented in Table 2.

As expected (39), there was variation of Salmonella
Typhimurium DT104 growth among batches of ground
chicken breast meat with a competitive microflora. Rather
than fit the primary model to MPN and CFU data from
individual replicates as was done previously (39), the pri-
mary model was fit to combined data from all five repli-
cates per temperature. This simplified modeling in two
ways. First, one rather than five sets of growth parameters
were obtained per temperature, which simplified secondary
modeling. Second, it provided a simple method (95% PI)
to quantify variation of pathogen growth among batches of
ground chicken breast meat with a competitive microflora
(Fig. 2). Lag phase was not always apparent in the growth
curves (Fig. 2), which made it difficult to develop a sec-
ondary model, and consequently, A was not modeled. Pa-
rameters of primary model fits and 95% PI for data used
in model development (i.e., dependent data) and data not
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FIGURE 1. Secondary model (——) for maximum time of sam-

pling () as a function of temperature for growth of Salmonella
Typhimurium DTI104 from a low initial density (10%6 MPN or
CFU/g) on ground chicken breast meat with a competitive micro-
flora. The indicated data points were excluded from the final mod-
el fit to yield a conservative model for predicting (2 as a function
of temperature in the tertiary model.

used in model development (i.e., independent data) are
shown in Table 3.

Corradini and Peleg (/2) found that sigmoid growth
curves are adequately described by primary models with
three (Np, 1, Npay) rather than four (Ng, N, i, Npax) pa-
rameters. This finding is consistent with results of the cur-
rent study (Fig. 2). An advantage of a primary model with-
out a parameter for N over a primary model with a term
for \ is that it simplifies modeling of pathogen growth un-
der dynamic conditions from data collected under constant
conditions. The most common approach for predicting
pathogen growth under dynamic conditions from models

TABLE 2. Best-fit values and 95% confidence intervals for pa-
rameters of the secondary models for maximum time of sampling
(02), 95% prediction interval (PI), maximum specific growth rate
(), and maximum population density (N,,,.)

Secondary 95% confidence
model Parameter Best-fit value interval
Q T, 24.39 23.74 to 25.04
Qpin 35.00 30.74 to 39.26
Qe —10.47 —10.97 to —9.98
PI PIL; 1.330 1.098 to 1.562
PI, 2.576 2.303 to 2.849
PL5 1.944 1.774 to 2.113
T, 10.00 Fixed
T, 14.85 Fixed
Ts 26.92 Fixed
1 i 0.04733 0.02804 to 0.06663
Ty 15.59 11.25 to 19.93
Porate 0.2188 0.1244 to 0.3131
Mopt 0.4084 0.3573 to 0.4595
Niax « 2.473 2.051 to 2.895
Tin 9.114 6.209 to 12.02
Tsubmin 5.655 —1.131 to 12.44
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FIGURE 2. Best-fit ( ) and 95% pre-
diction interval (-------) for primary model
fits to observed MPN and CFU data (O)
for growth of Salmonella Typhimurium
DTI104 from a low initial density (10°6
MPN or CFU/g) on ground chicken breast
meat with a competitive microflora at A)
10, B) 12, C) 14, D) 22, E) 30, or F) 40°C.
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developed under constant conditions is to calculate cumu-
lative N before each temperature shift and then to apply the
prediction of growth rate once cumulative \ has been ex-
hausted (7/9). By using a primary model without \ to model
pathogen growth, the latter calculation and its associated
assumptions can be avoided. The result is a more parsi-
monious approach for modeling pathogen growth under dy-
namic conditions from data collected under constant con-
ditions (11).

To model variation of Salmonella Typhimurium DT104

0 30 40 50 0 10
Time (h)

20 30 40 50
Time (h)

growth among batches of ground chicken breast meat with
a competitive microflora, a 95% PI was used. The 95% PI,
which were obtained during primary modeling, increased
in a non-linear manner as a function of temperature and
ranged from 1.4 to 2.4 log MPN or CFU/g (Fig. 3). A
secondary model with six parameters was used to model PI
as a function of temperature. To evaluate performance of
this model (3), independent MPN and CFU data were col-
lected, subjected to primary modeling (Fig. 4) and the re-
sulting PI (i.e., independent data) were included in the

TABLE 3. Observed (0), predicted (P), and relative error (RE) for data used (dependent) and not used (independent) in development
of secondary models for maximum specific growth rate (u), maximum population density (N,,..), and the 95% prediction interval (PI)

as a function of temperature (T)

w (h~1 Npax (log MPN or CFU/g) PI (log MPN or CFU/g)

T

(°C) Type of data (0] P RE (¢} P RE (0] P RE

10 Dependent 0.045 0.047 —0.058 1.63 1.66 —0.055 1.38 1.33 —0.122
11 Independent 0.050 0.047 0.063 2.28 2.39 —0.226 2.02 1.59 —1.711
12 Dependent 0.056 0.047 0.183 2.70 3.08 —0.588 1.74 1.84 0.213
14 Dependent 0.041 0.047 —=0.127 4.98 4.25 4.292 2.42 2.36 —0.154
18 Independent 0.080 0.074 0.084 5.34 5.93 —0.746 2.00 2.41 0.612
22 Dependent 0.142 0.142 —0.002 6.43 7.03 —0.744 2.18 2.20 0.049
26 Independent 0.228 0.229 —0.003 7.63 7.79 —0.300 1.96 1.99 0.071
30 Dependent 0.308 0.308 —0.001 8.49 8.34 0.404 1.92 1.94 0.054
34 Independent 0.337 0.360 —0.064 9.29 8.77 2.350 1.86 1.94 0.176
40 Dependent 0.394 0.394 —0.001 9.36 9.24 0.307 1.88 1.94 0.137
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FIGURE 3. Secondary model (——) for the 95% prediction in-
terval as a function of temperature for growth of Salmonella Ty-
phimurium DT104 from a low initial density (10%5 MPN or CFU/
g) on ground chicken breast meat with a competitive microflora.
Data used in model development (dependent data) and data not
used in model development (independent data) are shown.

graph for the secondary model (Fig. 3). In addition, per-
formance of the secondary model for PI was evaluated us-
ing the acceptable prediction zone method (37, 38). For
data (n = 6) used in model development, 100% of RE for
PI were acceptable (i.e., in the acceptable prediction zone
from an RE of —0.8 to 0.4), whereas for data (n = 4) not
used in model development 50% of RE for PI were ac-
ceptable. The criterion for acceptable model performance
in the acceptable prediction zone method is 70% or more
acceptable predictions (37, 38). Thus, the secondary model
for PI had acceptable goodness-of-fit (i.e., acceptable pre-
diction of dependent data) but did not provide acceptable
predictions of data not used in model development.

As expected, w increased in a nonlinear manner as a
function of temperature and ranged from 0.04 to 0.4 h~!
(Fig. 5). Between 10 and 15.6°C, there was not an apparent

log MPN or CFU/g
log MPN or CFU/g
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FIGURE 5. Secondary model (——) for maximum specific
growth rate () as a function of temperature for growth of Sal-
monella Typhimurium DTI104 from a low initial density (109
MPN or CFU/g) on ground chicken breast meat with a competi-
tive microflora. Data used in model development (dependent data)
and data not used in model development (independent data) are
shown.

change in p. This result is similar to a previous study (37)
in which w of Salmonella Typhimurium on sterile chicken
did not change between 10 and 11.4°C. However, it differs
from results of other studies for Salmonella and sterile
chicken (30, 31, 34, 35, 38) or sterile broth (17, 32, 44).
To validate the secondary model for w, independent
MPN and CFU data were collected, subjected to primary
modeling (Fig. 4) and the resulting independent data for
were included in the graph for the secondary model (Fig.
5). In addition, performance of the secondary model for
was evaluated using the acceptable prediction zone method
(Table 3). For data (n = 6) used in model development,
83% of predictions were acceptable (i.e., in an acceptable
prediction zone from —0.3 to 0.15), whereas for data (n =
4) not used in model development 100% of RE for p were

FIGURE 4. Best-fit ( ) and 95% pre-
diction interval (-------) for primary model
fits to observed MPN and CFU data (O)
for growth of Salmonella Typhimurium
DTI104 from a low initial density (10°6
MPN or CFU/g) on ground chicken breast
meat with a competitive microflora at A)
11, B) 18, C) 26, or D) 34°C. These data,
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which were obtained in five replicate chal-
lenge studies per temperature, were not
used in model development but rather were
used to validate secondary models and the
tertiary model.
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FIGURE 6. Secondary model ( ) for maximum population
density (N,,..) as a function of temperature for growth of Sal-
monella Typhimurium DTI104 from a low initial density (106
MPN or CFU/g) on ground chicken breast meat with a competi-
tive microflora. Data used in model development (dependent data)
and data not used in model development (independent data) are
shown.

acceptable. Both of these values (i.e., % RE) exceeded the
criterion of 70% for acceptable model performance in the
acceptable prediction zone method. Thus, the secondary
model for p had acceptable goodness-of-fit for data used
in model development and was validated against indepen-
dent data.

In a previous study (37), when growth of Salmonella
Typhimurium from a high initial density (10*8 CFU/g) on
sterile chicken was investigated, N,,,, increased from 8.5
log CFU/g at 10°C to 10.2 log CFU/g at 12 to 40°C. In
contrast, when growth of Salmonella Typhimurium DT104
from a high initial density (103-8 CFU/g) on ground chicken
breast meat with a competitive microflora was investigated,
Npax increased from 4.9 log CFU/g at 10°C to 9.8 log CFU/
g at 26 to 40°C (39). In the present study, when growth of
Salmonella Typhimurium DT104 from a low initial density
(1096 MPN or CFU/g) on ground chicken breast meat with
a competitive microflora was investigated, N,,,, increased
from 1.6 log MPN/g at 10°C to 9.4 log CFU/g at 34 to
40°C (Fig. 6). Although comparison of these studies is con-
founded by differences in initial density, the strain of Sal-
monella and other experimental variables, these results sug-
gest that the competitive microflora of ground chicken
breast meat reduces N,,,, and that the extent of the reduc-
tion of N, depends on the temperature and initial density.
In fact, greater reductions of N, by the competitive mi-
croflora were observed at low temperatures and low initial
density. However, at higher growth temperatures, N,,,, was
much less affected by the competitive microflora.

The reduction in N,,,, by the competitive microflora
can be explained by the effect described by Jameson (20)
in which final density of Salmonella is determined by its
growth rate relative to the competitive microflora. At low
temperatures, growth rate of Salmonella is less than growth
rate of cold-tolerant organisms in the competitive microflo-
ra (46, 47). Consequently, nutrient exhaustion by the faster
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growing competitors at low temperatures prevents Salmo-
nella from achieving the high final density observed in ster-
ile food systems. At higher temperatures, growth rate of
Salmonella is similar (47) or higher (46) than that of the
competitive microflora resulting in N,,,, that are closer to
those observed in sterile food systems. In addition, to the
Jameson effect, reductions in N, occur through other
mechanisms such as those involving production of anti-Sal-
monella products (e.g., inhibitory peptides and organic ac-
ids) by competitors (4, 7, 10, 27). Thus, numbers and types
or strains of competitors, which vary among chickens (73,
48), interact with storage conditions (e.g., temperature) to
determine N,,,, of Salmonella Typhimurium DT104, which
was observed to vary among batches of ground chicken
breast meat in this and another study (39).

To evaluate performance of the secondary model for
Npax independent MPN and CFU data were collected, sub-
jected to primary modeling (Fig. 4), and the resulting in-
dependent data for N,,,, were included in the graph for the
secondary model (Fig. 6). In addition, performance of the
secondary model for N,,,, was evaluated using the accept-
able prediction zone method (Table 3). For data (n = 6)
used in model development, 83% of predictions were in the
acceptable prediction zone from an RE of —0.8 to 0.4,
whereas for data (n = 4) not used in model development
75% of predictions for N,,,, were acceptable. Both of these
values (i.e., % RE) exceeded the criterion of 70% for ac-
ceptable model performance in the acceptable prediction
zone method. Thus, the secondary model for N,,,, had ac-
ceptable goodness-of-fit for data used in model develop-
ment and was validated against independent data.

The secondary models for Q, PI, w, and N, were
combined with the primary model in a computer spread-
sheet to create a tertiary model for predicting the variation
of Salmonella Typhimurium DT104 growth on ground
chicken breast meat with a competitive microflora and from
a low initial density as a function of time and temperature
(10 to 40°C). To evaluate performance of the tertiary model
(Fig. 7), the times and temperatures for individual MPN
and CFU data (n = 344) used in model development (de-
pendent data) were entered into the tertiary model and then
if the observed MPN or CFU data were in the 95% PI
predicted by the tertiary model, the tertiary model predic-
tion was classified as acceptable. For dependent data, 322
of 344 MPN or CFU data were in the 95% PI predicted by
the tertiary model for 93.3% acceptable predictions. This
percentage of acceptable predictions exceeded the stated
criterion (see ‘“Materials and Methods™ for an explanation)
of 90% for acceptable performance and thus, the tertiary
model was successfully verified.

To further evaluate performance of the tertiary model
(Fig. 7), individual times and temperatures for MPN and
CFU data (n = 236) not used in model development (in-
dependent data) were entered into the tertiary model and
then if observed MPN or CFU data were in the 95% PI
predicted by the tertiary model, the prediction was classi-
fied as acceptable. For independent data, 223 of 236 ob-
served MPN and CFU data were in 95% PI predicted by
the tertiary model for 94.5% acceptable predictions. This
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Parameter Units Range Input
Initial Density log MPN or CFU/g 0.60
Time h 156 20
Temperature °’C 10 to 40 12.8
Output
Predicted Density log MPN or CFU/g Maximum 2.25
Most likely 1.23
Minimum 0.20
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FIGURE 7. Tertiary model for predicting, as a function of time
and temperature (10 to 40°C), variation of Salmonella Typhimu-
rium DTI104 growth from a low initial density (10%¢ MPN or
CFU/g) on ground chicken breast meat with a competitive micro-
flora. Most likely growth curve (middle line) and its 95% predic-
tion interval (defined by lower and upper lines) for 12.8°C (55°F)
and predicted minimum, most likely and maximum density of Sal-
monella Typhimurium DT104 on ground chicken breast meat with
a competitive microflora after 20 h at 12.8°C.

percentage of acceptable predictions exceeded the 90% cri-
terion for acceptable performance and thus, the tertiary
model was successfully validated.

The tertiary model developed and validated in this
study predicts growth of Salmonella Typhimurium DT104
from an initial average density of 0.6 log MPN or CFU/g
or about four cells per gram of ground chicken breast meat.
The reported size of Salmonella Typhimurium grown in the
laboratory and inoculated onto chicken skin is 1.45 * 0.29
pwm? (22). If one examines electron micrographs at the mi-
crometer level, it is apparent that these four inoculated cells
of the pathogen would have experienced a heterogeneous
microenvironment with respect to nutrients and competitive
microflora (217). Consequently, ground chicken was not an-
alyzed for nutrient or competitive microflora content be-
cause it was felt that average values for 1-, 10-, or 25-g
samples would not accurately reflect the microenvironment
experienced by the inoculated cells. In addition and as pre-
viously discussed (39), a pathogen growth model with an
input for the competitive microflora would not find practi-
cal application in the food industry because it would take
about 7 days to quantify the initial numbers of competitors
and longer to determine the types of competitors present.
Thus, by the time these test results would become available,
the meat would either have been consumed or spoiled.

A similar conclusion was reached by Lebert et al. (23)
who stated that “even if the average water content of a
food sample is easily measured, it does not reflect the water
content at the surface of the products.” Moreover, it is not
possible to measure water activity at the surface of a food
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(i.e., a microenvironment) because water activity is dynam-
ic and methods do not exist for measuring water activity
on such a small sample (23). Consequently, to predict ef-
fects of dynamic changes in water activity at the surface of
food on microbial growth, Lebert et al. (23) developed a
global model, which includes a microbial growth model, a
water transfer model, and a thermodynamic model.

In addition to water activity, other factors in food are
dynamic in both time and space (57); for example, pH,
temperature, and the competitive microflora. Using the
global modeling approach of Lebert et al. (23) to predict
pathogen growth on food would require additional models
to predict dynamic changes in time and space of these ad-
ditional factors. The result would be a very complex global
model that would be difficult to validate. Likewise, using
the Bayesian approach of Delignette-Muller et al. (/4) to
model variability and uncertainty of the competitive micro-
flora on pathogen growth would result in a very complex
model that would be difficult to validate.

An alternative and more parsimonious approach to
modeling pathogen growth in response to dynamic changes
in time and space of both abiotic and biotic factors in food
microenvironments was demonstrated in this research and
in a previous study by Geysen et al. (16), namely, use of a
95% prediction interval to capture and predict variation of
pathogen growth among batches of food with competitive
microflora. For example, for the temperature abuse scenario
(20 h at 12.8°C) illustrated in Figure 7, the tertiary model
developed in this study predicted a 95% PI of 2.05 log
MPN or CFU/g and a minimum, most likely and maximum
pathogen density of 10%-29, 101-23, and 10%2> MPN or CFU/
g, respectively. When interpreting this prediction, no as-
sumptions are made or necessary as to why pathogen den-
sity after 20 h at 12.8°C is predicted to vary from 10°-20 to
10225 MPN or CFU/g. Rather, it is recognized that variation
of abiotic and biotic factors in the food among batches and
in time and space can explain the predicted range of path-
ogen density for a specified time and temperature scenario.
Such stochastic predictions of pathogen growth will be of
particular value for improving predictions of microbial risk
assessments for Salmonella and poultry meat (6, 29, 36,
49).

The tertiary model developed and validated in this
study was not tested for the ability to predict growth of
other strains of Salmonella because there were no other
strains available that had a phenotype that would allow col-
lection of growth data in ground chicken breast meat with
a competitive microflora. The strain of Salmonella Typhi-
murium DT104 used in this study has several characteristics
that make it a good strain for modeling Salmonella behavior
in chicken with a competitive microflora. First, the strain
occurs in beef, but is rarely isolated from chicken (/8).
Thus, interference from indigenous populations is not a
concern in modeling growth from low initial densities. Sec-
ond, the strain is resistant to multiple antibiotics, with typ-
ical resistance to ampicillin, chloramphenicol, streptomy-
cin, sulfonamides, and tetracyclines (ACSSuT) (9). Thus, a
selective media with multiple antibiotics can be used to
inhibit competitors and follow behavior of the strain even



2056 OSCAR

in the presence of high numbers of competitive microflora.
Third, the antibiotic resistance genes are carried in the chro-
mosome, which means the MAR phenotype is stable (9).
Fourth, growth of the DT104 strain used in this study is
similar to other strains of Salmonella in sterile food systems
(data not shown). Although this does not validate that it
behaves similar to other strains of Salmonella in chicken
with a competitive microflora it does offer a degree of as-
surance that it does provide reasonable predictions of Sal-
monella growth in chicken with a competitive microflora.

There are clearly important strain variations in the
growth of Salmonella (15, 28, 33, 40). To better character-
ize this variation and develop better models, methods are
needed where the strains common to a particular food can
be isolated and transformed to a phenotype that can be fol-
lowed in the presence of competitive microflora. We have
attempted to do this by genetically engineering strains of
Salmonella to express the green fluorescent protein (GFP)
from the jellyfish Aequorea victoria (35, 40). However, thus
far, our attempts to produce GFP strains that behave the
same as the parents have been unsuccessful. Under most
growth conditions examined, the GFP strain grows slower
than the parent strain (35).

Similar to the current study, Mackey and Kerridge (24)
modeled growth of Salmonella in a ground meat (i.e.,
minced beef) with a competitive microflora. However, they
used a cocktail of strains (Thompson, Stanley, and Infantis)
selected for resistance to multiple antibiotics (nalidixic acid
and rifampin) rather than a single MAR strain that occurs
in nature. Nonetheless, similar to our research, a selective
medium (brilliant green agar) with multiple antibiotics was
used to quantify pathogen growth from a low (40 CFU/g)
or high (10,000 CFU/g) initial density. In contrast to our
research, initial density did not affect N\ or . as a function
of temperature (10 to 35°C) in minced beef. In ground
chicken breast meat with a competitive microflora, N was
not always apparent when Salmonella Typhimurium DT104
was inoculated at a low (1096 MPN or CFU/g) initial den-
sity, but N was consistently observed when the pathogen
was inoculated at a high (1038 CFU/g) initial density (39).
Another difference was that N, of Salmonella in minced
beef was 1085 CFU/g at 15°C (24) as compared to a pre-
dicted Ny, of 10*7 CFU/g (95% PI = 1034 to 10 CFU/
g) at 15°C in this research. Differences in strains of Sal-
monella, type of meat, types and numbers of competing
microflora, and other experimental conditions and modeling
methods can explain differences in results between our re-
search and that of Mackey and Kerridge (24). Regardless,
these studies demonstrate that it is possible to investigate
and model growth of Salmonella in poultry and red meat
with competitive microflora using strains resistant to mul-
tiple antibiotics.

In summary, objectives of this research to develop and
validate a tertiary model that predicts variation of Salmo-
nella growth among batches of ground chicken breast meat
with a competitive microflora and from a lower initial den-
sity were accomplished. Of note, MPN and CFU data were
used in tandem to model growth of Salmonella from a low
initial density (i.e., 1096 MPN or CFU/g) that is very close
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to the mean initial density (i.e., 10°-! MPN/g) of Salmonella
levels reported in a recent survey of retail ground chicken
samples by FSIS (/). In addition, a simple stochastic meth-
od (i.e., 95% PI) and a simple validation method (i.e., 90%
concordance) were developed for modeling variation of
Salmonella growth among batches of ground chicken breast
meat with a competitive microflora. These methods offer a
simple alternative to more complex modeling approaches
being developed for predicting growth of pathogens in food
with competitive microflora. The validated model will help
chicken processors and risk assessors to better predict safe-
ty of ground chicken breast meat exposed to times and tem-
peratures that support growth of Salmonella.

ACKNOWLEDGMENTS

The author appreciates the outstanding technical and administrative
assistance of Jaci Ludwig and Pat Shannon (Agricultural Research Ser-
vice) and the excellent technical assistance of Joseph Ezimoha (University
of Maryland Eastern Shore).

REFERENCES

1. Anonymous. 1996. Nationwide raw ground chicken microbiological
survey. U.S. Department of Agriculture, Food Safety and Inspection
Service, May:1-8.

2. Augustin, J. C., and V. Carlier. 2000. Mathematical modeling of the
growth rate and lag time for Listeria_monocytogenes. Int. J. Food
Microbiol. 56:29-51.

3. Baranyi, J., T. Ross, T. A. McMeekin, and T. A. Roberts. 1996.
Effects of parameterization on the performance of empirical models
used in ‘predictive microbiology’. Food Microbiol. 13:83-91.

4. Barrow, P A, M. A. Lovell, and L. Z. Barber. 1996. Growth sup-
pression in early-stationary phase nutrient broth cultures of Salmo-
nella typhimurium and Escherichia coli is genus specific and not
regulated by s%. J. Bacteriol. 178:3072-3076.

5. Beckers, H. J., J. V. D. Heide, U. Fenigsen-Narucka, and R. Peters.
1987. Fate of salmonellas and competing flora in meat sample en-
richments in buffered peptone water and in Muller-Kauffmann’s te-
trathionate medium. J. Appl. Bacteriol. 62:97-104.

6. Bemrah, N., H. Bergis, C. Colmin, A. Beaufort, Y. Millemann, B.
Dufour, J. J. Benet, O. Cerf, and M. Sanaa. 2002. Quantitative risk
assessment of human salmonellosis from the consumption of a tur-
key product in collective catering establishments. Int. J. Food Mi-
crobiol. 80:17-30.

7. Bielecka, M., E. Biedrzycka, E. Biedrzycka, W. Smoragiewicz, and
M. Smieszek. 1998. Interaction of Bifidobacterium and Salmonella
during associated growth. Int. J. Food Microbiol. 45:151-155.

8. Buchanan, R. L., R. C. Whiting, and W. C. Damert. 1997. When is
simple good enough: a comparison of the Gompertz, Baranyi and
three-phase linear models for fitting bacterial growth curves. Food
Microbiol. 14:313-326.

9. Cloeckaert, A., and S. Schwarz. 2001. Molecular characterization,
spread and evolution of multidrug resistance in Salmonella enterica
Typhimurium DT104. Vet. Res. 32:301-310.

10. Coleman, M. E., S. Sandberg, and S. A. Anderson. 2003. Impact of
microbial ecology of meat and poultry products on predictions from
exposure assessment scenarios for refrigerated storage. Risk Anal.
23:215-228.

11. Corradini, M. G., A. Amezquita, M. D. Normand, and M. Peleg.
2006. Modeling and predicting non-isothermal microbial growth us-
ing general purpose software. Int. J. Food Microbiol. 106:223-228.

12.  Corradini, M. G., and M. Peleg. 2005. Estimating non-isothermal
bacterial growth in foods from isothermal experimental data. J. Appl.
Microbiol. 99:187-200.

13.  Cunningham, E E. 1982. Microbiological aspects of poultry and
poultry products. J. Food Prot. 45:1149-1164.

14. Delignette-Muller, M. L., M. Cornu, R. Pouillot, and J.-B. Denis.
2006. Use of Bayesian modelling in risk assessment: Application to



http://www.ingentaconnect.com/content/external-references?article=0168-1605()56L.29[aid=7002143]
http://www.ingentaconnect.com/content/external-references?article=0168-1605()56L.29[aid=7002143]
http://www.ingentaconnect.com/content/external-references?article=0740-0020()13L.83[aid=5451615]
http://www.ingentaconnect.com/content/external-references?article=0021-9193()178L.3072[aid=7453283]
http://www.ingentaconnect.com/content/external-references?article=0021-8847()62L.97[aid=5838444]
http://www.ingentaconnect.com/content/external-references?article=0168-1605()80L.17[aid=5838445]
http://www.ingentaconnect.com/content/external-references?article=0168-1605()80L.17[aid=5838445]
http://www.ingentaconnect.com/content/external-references?article=0168-1605()45L.151[aid=7453282]
http://www.ingentaconnect.com/content/external-references?article=0740-0020()14L.313[aid=2451796]
http://www.ingentaconnect.com/content/external-references?article=0740-0020()14L.313[aid=2451796]
http://www.ingentaconnect.com/content/external-references?article=0928-4249()32L.301[aid=3426894]
http://www.ingentaconnect.com/content/external-references?article=0272-4332()23L.215[aid=7103528]
http://www.ingentaconnect.com/content/external-references?article=0272-4332()23L.215[aid=7103528]
http://www.ingentaconnect.com/content/external-references?article=0168-1605()106L.223[aid=7453281]
http://www.ingentaconnect.com/content/external-references?article=1364-5072()99L.187[aid=7453280]
http://www.ingentaconnect.com/content/external-references?article=1364-5072()99L.187[aid=7453280]
http://www.ingentaconnect.com/content/external-references?article=0362-028X()45L.1149[aid=7453279]

J. Food Prot., Vol. 69, No. 9

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

growth of Listeria monocytogenes and food flora in cold-smoked
salmon. Int. J. Food Microbiol. 106:195-208.

Fehlhaber, E, and G. Kruger. 1998. The study of Salmonella enter-
itidis growth kinetics using Rapid Automated Bacterial Impedance
Technique. J. Appl. Microbiol. 84:945-949.

Geysen, S., B. E. Verlinden, A. H. Geeraerd, J. E Van Impe, C. W.
Michiels, and B. M. Nicolai. 2005. Predictive modelling and vali-
dation of Listeria innocua growth at superatmospheric oxygen and
carbon dioxide concentrations. Int. J. Food Microbiol. 105:333-345.
Gibson, A. M., N. Bratchell, and T. A. Roberts. 1988. Predicting
microbial growth: growth responses of salmonellae in a laboratory
medium as affected by pH, sodium chloride and storage temperature.
Int. J. Food Microbiol. 6:155-178.

Glynn, M. K., C. Bopp, W. Dewitt, P. Dabney, M. Mokhtar, and E
J. Angulo. 1998. Emergence of multidrug-resistant Salmonella en-
terica serotype Typhimurium DT104 infections in the United States.
N. Engl. J. Med. 338:1333-1338.

Ingham, S. C., R. K. Wadhera, M. A. Fanslau, and D. R. Buege.
2005. Growth of Salmonella serovars, Escherichia coli O157:H7,
and Staphylococcus aureus during thawing of whole chicken and
retail ground beef portions at 22 and 30°C. J. Food Prot. 68:1457—
1461.

Jameson, J. E. 1962. A discussion of the dynamics of Salmonella
enrichment. J. Hyg. 60:193-205.

Kim, J.-W., and S. Doores. 1993. Attachment of Salmonella typhi-
murium to skins of turkey that had been defeathered through three
different systems: scanning electron microscopic examination. J.
Food Prot. 56:395-400.

Kim, J.-W., and S. Doores. 1993. Influence of three defeathering
systems on microtopography of turkey skin and adhesion of Sal-
monella_typhimurium. J. Food Prot. 56:286-291.

Lebert, 1., C. G. Dussap, and A. Lebert. 2005. Combined physico-
chemical and water transfer modelling to predict bacterial growth
during food processes. Int. J. Food Microbiol. 102:305-322.
Mackey, B. M., and A. L. Kerridge. 1988. The effect of incubation
temperature and inoculum size on growth of salmonellae in minced
beef. Int. J. Food Microbiol. 6:57—65.

Motulsky, H. 1995. Simple linear regression, p. 167—180. In Intuitive
biostatistics. Oxford University Press, New York.

Motulsky, H., and A. Christopoulos. 2003. Troubleshooting ‘‘bad”
fits, p. 38—46. In Fitting models to biological data using linear and
nonlinear regression. A practical guide to curve fitting. GraphPad
Software, Inc., San Diego, Calif.

Oblinger, J. L., and A. A. Kraft. 1970. Inhibitory effects of Pseu-
domonas on selected Salmonella and bacteria isolated from poultry.
J. Food Sci. 35:30-32.

Oscar, T. P. 1998. Growth kinetics of Salmonella isolates in a labo-
ratory medium as affected by isolate and holding temperature. J.
Food Prot. 61:964-968.

Oscar, T. P. 1998. The development of a risk assessment model for
use in the poultry industry. J. Food Saf. 18:371-381.

Oscar, T. P. 1999. Response surface models for effects of temperature
and previous growth sodium chloride on growth kinetics of Salmo-
nella Typhimurium on cooked chicken breast. J. Food Prot. 62:
1470-1474.

Oscar, T. P. 1999. Response surface models for effects of temperature
and previous temperature on lag time and specific growth rate of
Salmonella Typhimurium on cooked ground chicken breast. J. Food
Prot. 62:1111-1114.

Oscar, T. P. 1999. Response surface models for effects of tempera-
ture, pH, and previous growth pH on growth kinetics of Salmonella

GROWTH OF SALMONELLA FROM A LOW INITIAL DENSITY

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

2057

Typhimurium in brain heart infusion broth. J. Food Prot. 62:106—
111,

Oscar, T. P. 2000. Variation of lag time and specific growth rate
among 11 strains of Salmonella inoculated onto sterile ground chick-
en breast burgers and incubated at 25°C. J. Food Saf. 20:225-236.
Oscar, T. P. 2002. Development and validation of a tertiary simula-
tion model for predicting the potential growth of Salmonella Typhi-
murium on cooked chicken. Int. J. Food Microbiol. 76:177-190.
Oscar, T. P. 2003. Comparison of predictive models for growth of
parent and green fluorescent protein-producing strains of Salmonella.
J. Food Prot. 66:200-207.

Oscar, T. P. 2004. A quantitative risk assessment model for Salmo-
nella and whole chickens. Int. J. Food Microbiol. 93:231-247.
Oscar, T. P. 2005. Development and validation of primary, secondary
and tertiary models for predicting growth of Salmonella Typhimu-
rium on sterile chicken. J. Food Prot. 68:2606-2613.

Oscar, T. P. 2005. Validation of lag time and growth rate models for
Salmonella Typhimurium: acceptable prediction zone method. J.
Food Sci. 70:M129-M137.

Oscar, T. P. Predictive model for growth of Salmonella Typhimurium
DT104 (ATCC 700408) from a high initial density on ground chick-
en breast meat with a competitive microflora. Submitted for publi-
cation.

Oscar, T. P, K. Dulal, and D. Boucaud. 2006. Transformation of
Escherichia coli K-12 with a high copy plasmid encoding the green
fluorescent protein reduces growth: implications for predictive mi-
crobiology. J. Food Prot. 69:276-281.

Rhodes, P, L. B. Quesnel, and P. Collard. 1985. Growth kinetics of
mixed culture in salmonella enrichment media. J. Appl. Bacteriol.
59:231-237.

Rose, J. B., C. N. Haas, and C. P. Gerba. 1995. Linking microbio-
logical criteria for foods with quantitative risk assessment. J. Food
Saf. 15:121-132.

Stecchini, M. L., L. Ferraro, and G. Caserio. 1988. Dynamics of
Salmonella pre-enrichment in buffered peptone water. Microbiol. Al-
iments Nutr. 6:367-371.

Thayer, D. W., W. S. Muller, R. L. Buchanan, and J. G. Phillips.
1987. Effect of NaCl, pH, temperature, and atmosphere on growth
of Salmonella Typhimurium in glucose-mineral salts medium. Appl.
Environ. Microbiol. 53:1311-1315.

Thomas, H. A. 1942. Bacterial densities from fermentation tube
tests. J. Am. Water Works Assoc. 34:572-576.

Thomas, L. V., and J. W. T. Wimpenny. 1996. Competition between
Salmonella and Pseudomonas species growing in and on agar, as
affected by pH, sodium chloride concentration and temperature. Int.
J. Food Microbiol. 29:361-370.

Tiwari, N. P, and R. B. Maxey. 1972. Comparative growth of sal-
monellae, coliforms, and other members of the microflora of raw
and radurized ground beef. J. Milk Food Technol. 35:455-460.
Waldroup, A. L., B. M. Rathgeber, and R. H. Forsythe. 1992. Effects
of six modifications on the incidence and levels of spoilage and
pathogenic organisms on commercially processed postchill broilers.
J. Appl. Poult. Res. 1:226-234.

Whiting, R. C., and R. L. Buchanan. 1997. Development of a quan-
titative risk assessment model for Salmonella enteritidis in pasteur-
ized liquid eggs. Int. J. Food Microbiol. 36:111-125.

Wijtzes, T, J. C. de Wit, J. H. J. Huis in’t Veld, K. van’t Riet, and
M. H. Zwietering. 1995. Modeling bacterial growth of Lactobacillus
curvatus as a function of acidity and temperature. Appl. Environ.
Microbiol. 57:780-783.

Zuliani, V., I. Lebert, and A. Lebert. 2004. Integrated modelling of
food processing and bacterial behaviour. Recent Res. Devel. Micro-
biol. 8:295-323.



http://www.ingentaconnect.com/content/external-references?article=0168-1605()106L.195[aid=7453292]
http://www.ingentaconnect.com/content/external-references?article=1364-5072()84L.945[aid=5838447]
http://www.ingentaconnect.com/content/external-references?article=0168-1605()105L.333[aid=7453291]
http://www.ingentaconnect.com/content/external-references?article=0168-1605()6L.155[aid=2287224]
http://www.ingentaconnect.com/content/external-references?article=0028-4793()338L.1333[aid=831812]
http://www.ingentaconnect.com/content/external-references?article=0362-028X()68L.1457[aid=7453290]
http://www.ingentaconnect.com/content/external-references?article=0022-1724()60L.193[aid=3205402]
http://www.ingentaconnect.com/content/external-references?article=0362-028x()56L.395[aid=3332749]
http://www.ingentaconnect.com/content/external-references?article=0362-028x()56L.395[aid=3332749]
http://www.ingentaconnect.com/content/external-references?article=0362-028x()56L.286[aid=3332750]
http://www.ingentaconnect.com/content/external-references?article=0362-028x()56L.286[aid=3332750]
http://www.ingentaconnect.com/content/external-references?article=0168-1605()102L.305[aid=7453289]
http://www.ingentaconnect.com/content/external-references?article=0168-1605()6L.57[aid=2732407]
http://www.ingentaconnect.com/content/external-references?article=0362-028x()61L.964[aid=3478772]
http://www.ingentaconnect.com/content/external-references?article=0362-028x()61L.964[aid=3478772]
http://www.ingentaconnect.com/content/external-references?article=0362-028x()62L.1470[aid=5451301]
http://www.ingentaconnect.com/content/external-references?article=0362-028x()62L.1470[aid=5451301]
http://www.ingentaconnect.com/content/external-references?article=0362-028x()62L.1111[aid=3478773]
http://www.ingentaconnect.com/content/external-references?article=0362-028x()62L.1111[aid=3478773]
http://www.ingentaconnect.com/content/external-references?article=0362-028x()62L.106[aid=5401262]
http://www.ingentaconnect.com/content/external-references?article=0168-1605()76L.177[aid=3478774]
http://www.ingentaconnect.com/content/external-references?article=0362-028X()66L.200[aid=6533005]
http://www.ingentaconnect.com/content/external-references?article=0362-028X()66L.200[aid=6533005]
http://www.ingentaconnect.com/content/external-references?article=0168-1605()93L.231[aid=7002261]
http://www.ingentaconnect.com/content/external-references?article=0362-028X()68L.2606[aid=7453287]
http://www.ingentaconnect.com/content/external-references?article=0362-028X()69L.276[aid=7453286]
http://www.ingentaconnect.com/content/external-references?article=0021-8847()59L.231[aid=7453285]
http://www.ingentaconnect.com/content/external-references?article=0021-8847()59L.231[aid=7453285]
http://www.ingentaconnect.com/content/external-references?article=0099-2240()53L.1311[aid=6593064]
http://www.ingentaconnect.com/content/external-references?article=0099-2240()53L.1311[aid=6593064]
http://www.ingentaconnect.com/content/external-references?article=0003-150x()34L.572[aid=3205586]
http://www.ingentaconnect.com/content/external-references?article=0168-1605()29L.361[aid=6361365]
http://www.ingentaconnect.com/content/external-references?article=0168-1605()29L.361[aid=6361365]
http://www.ingentaconnect.com/content/external-references?article=0168-1605()36L.111[aid=821421]

