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ABSTRACT

Spatiotemporal variability in forage quantity and quality requires that regular assessment is needed of
the capacity for grasslands to support livestock nutritional requirements. Current methods for estimating
grazing capacity are typically production-based and lack the forage quality data necessary to match
nutrients in forage with livestock requirements in real time. This paper describes a method for estimating
short-term grazing capacity for small (1-20 ha) paddocks using cattle nutrition and high spatial resolu-
tion forage data in Geographic Information Systems (GIS) for mixed-grass prairie. We define grazing
capacity as the number of days a specific paddock will support the nutritional requirements of beef cattle.
We integrate previously published methods for estimating cattle nutritional requirements, forage quality
(crude protein) and forage quantity (phytomass) to estimate grazing capacity based on current standing-
crop. The model utilizes high-resolution (<30-m) satellite imagery or field data to estimate short-term
grazing capacity for small paddocks. Three versions of the model were evaluated on one paddock under
cattle use in 2007. One version was parameterized using data collected on June 22 from the Landsat The-
matic Mapper (TM), one version was parameterized using data collected June 23 from the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and one version was parameterized
using data collected June 20 from field clippings. TM and ASTER versions underestimated grazing capacity
by four days while the field version overestimated grazing capacity by one day. Results suggest integra-
tion of cattle nutrition and forage data in GIS could assist with stocking rate adjustments, but additional

trials are needed.

Published by Elsevier Ltd.

1. Introduction

Producers need real-time estimates of grazing capacity for mul-
tiple paddocks because the capacity for Northern US prairie grass-
lands to meet livestock nutritional requirements changes
seasonally and annually (Vallentine, 2001; Diaz-Solis et al., 2006;
Grigera et al.,, 2007). Stocking rates should be dynamic to preserve
the sustainable balance between livestock production and grass-
land health (Diaz-Solis et al., 2006). Livestock performance is di-
rectly influenced by the quantity and quality of forage, so these
variables are typically used as indicators of grazing capacity. How-
ever, determination of forage quality and quantity in the field typ-
ically requires intensive surveys that are time-consuming and
expensive, so managers often estimate grazing capacity based on
historical land-use and visual inspections (Vallentine, 2001).
Forage quantity and quality can be estimated remotely for North
Dakota grasslands at multiple locations with <20% error (Phillips
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et al., 2006; Beeri et al., 2007), so incorporation of forage data into
existing livestock performance models is a logical next-step to-
wards building decision support systems. Linking these dynamic
forage data with cattle nutrition requirements in a Geographic
Information Systems (GIS) framework would help optimize re-
source utilization by matching real-time forage availability to live-
stock nutritional needs (Moen, 1984; Hobbs et al., 1985) and
support adaptive and sustainable grassland management (Hunt
et al., 2003).

Landsat Thematic Mapper (TM) and Advanced Very High Reso-
lution Radiometer (AVHRR) data have been applied toward moni-
toring grassland trend and condition in Western Australia (Bastin
et al., 1998; Edirisinghe et al., 2000; Wallace et al., 2004), the Bra-
zilian Amazon (Asner et al., 2004; Numata et al., 2007), the South-
western, USA (Qi et al., 2000), and Western China (Zha et al., 2003).
In many cases, the focus is on delineation of vegetation from bare
soil or on qualitative differences in spectral vegetation index values
(Pickup et al., 1993; Qi et al., 1994), which is practical for long-term
monitoring. Some have used Moderate Resolution Imaging Spect-
roradiometer (MODIS) and AVHRR data in models of radiation
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use efficiency to estimate pasture growth rates in sub-humid tem-
perate (Grigera et al,, 2007) and Mediterranean (Hill et al., 2004)
climates, providing quantitative pasture data. The frequency of
MODIS and AVHRR data is much greater than other satellite-based
sensors, and they provide data at spatial resolutions well-suited for
kilometer-scale pasture assessment. Previously developed, high-
resolution {<30-m pixel) forage quality and quantity data could
support grazing capacity inventories for small {1-20 ha) paddocks,
given a model for interpreting these data in the context of livestock
management {Wallace et al., 2004).

Determining the length of time a paddock might sustainably
support a cattle herd without damaging the grassiand resource re-
quires current forage information. Typically, this is occularly esti-
mated, which is often based on cwrent standing crop and
historical resilience of the grassland to grazing. Current methods
for assessing the capacity of grassiands to support a specific herd
of cattie rarely include needed forage quality information (Vallen-
tine, 2001), which influences animal intake, selection and perfor-
mance (Ellis, 1978). Recent advances in satellite-based indicators
of forage quality now make it possible 1o garner forage nutritional
information on a mass basis to assist with stocking rate adjust-
ments {Phillips et al,, 2006), based on grassland capacity to support
beef cattie.

We addressed the problem of matching livestock nutritional
needs with crude protein available in forage at a paddock scale
by empioying previously published methods for estimating forage
quality {(Phillips et al., 2006}, quantity (Beeri et al., 2007), and cattle
nutritional needs (National Research Council, 2000) in a2 mode} de-
signed {o estimate the number of days a specific paddock might
support a specific cattle herd. We evaluated three versions of this
model on one 1.9 ha paddock (#1314). One version of the model
was parameterized using TM data, one using Advanced Spaceborne
Thermal Emission and Reflection Radiometer {ASTER) data, and
one using field data. We compared these grazing capacity esti-
mates with forage used by cattle in a grazing trial, Following are
the steps required to build and implement the model, including sa-
tellite data calibration, paddock mapping, model construction, and
a cattle grazing trial. Our objective was to describe a method for
estimating grazing capacity for small paddocks by matching live-
stock nutritional requirements with forage quality and quantity
to support moere timely land management decisions, We compare
three model versions (each parameterized using different data
sources) with forage utilization by cattle use in a short-term graz-
ing trial.

2. Methods
2.1. Study area

The study area is located in Mandan, ND, USA (46°46'N,
100°54'W), which is located in the Northern Great Plains Ecoregion
and the larger Northern mixed-grass prairie physiographic region
(Omernik, 1987}, Vegetation is comprised of historically native
species, inciuding blue grama {Bouteloua gracilis (HBK.) Lag. Ex
Griffiths], Western wheatgrass [Pascopyrum smithii (Rybd) Love],
needle-and-thread (Hesperostipa comata Comata Trin. and Rupr.),
green needle grass {Nassella viridula (Trin.) Barkworth| and carex
(Carex filifolia Nutt, and Carex heliophila Mack.) (USDA, 2008). How-
ever, these native species have been displaced in recent decades by
the invasion of smooth brome (Bromus inermis Leyss.) and Ken-
tucky bluegrass (Pea pratensis L.}, which together comprise ~60%
of the basal area (J. Hendrickson, unpublished data). Predominant
seils are Temvik-Wilton silt loams (FAO: Calcic Siitic Chernozems;
USDA: fine-silty, mixed, superactive, frigid Typic and Pachic
Hapiustolls). Long-term weather station records {1913~2006) indi-

cate that average annual air temperature during the growing sea-
son (April-September) is 20°C and annual precipitation is
412 mm (Mandan Experiment Station, 2007).

2.2, Satellite data processing

image processing was performed with a June 22, 2007 Landsat
TM image, a June 23, 2007 ASTER image, and field calibration data
coliected June 20, 2007. Images were pre-processed using ERDAS
Imagine 8.7 software and geo-referenced to the same projection
(UTM, 14 North, WGS 84 Datum) with less than one-half pixel er-
ror. Atmospheric corrections were performed using the empirical
tine method and spectra coltected from field calibration sites {Mor-
an et al,, 2001; Clark et al., 2002) with less than 4% error for each
spectral band used in this study.

Previously published methods for deriving canopy carbonf
nitrogen ratio (C/N) and photosynthetically-active vegetation
(PV) mass were used to estimate forage quality and quantity {Phil-
lips et al., 2006; Phillips and Beeri, 2008), which utilize spectral
reflectance data available from multispectral satellites in the red
and short-wave infrared (SWIR) spectral regions {Beeri et al,
2007). The computation for C/N is similar for both TM and ASTER
sensor data and does not require field calibration points (Phitlips
et al.,, 2006). The C/N ratio is converted to percentage crude protein
(CP.) by assuming a 40% carbon content and the 6.25% multiplier
for conversion of plant N to crude protein {Beeri et al., 2007);

CP, =6.25 x (c%%)‘ {1

The Modified Seit Adjusted Vegetation index {(MSAVI) can be de-
rived from TM and ASTER data to estimate PV mass and is calcu-
lated as follows:

MSAVI = 0.5°(2" prg + 1) = V(2" o + 1) = 8 (D~ Prea))s

' {2}
where pyg is reflectance for the waveiength (i) band in the near in-
fra-red spectral region (Jy77_g04 for TM; Jys6_g76 for ASTER) and preq
is reflectance for the £ band in the red spectral region {/s27.gea for
TM; Z620-gg0 for ASTER), MSAVI index values <0.50 are considered
below the saturation threshold (Hill et al., 2004); however, we aiso
collected MSAVI values at a standardized field site where spectral
reflectance values were characteristically high to determine if
grassland pixels were near saturation. The MSAV], calculated for
each pixel, was linearly regressed on the 25 field calibration points
to derive equations for estimating PV mass. The mass of crude pro-
tein in PV (CPy,_py) for all TM and ASTER pixels was then calculated
{Beeri et al,, 2007

CPin_py = %—6 % (PV mass). (3)

2.3. Phytomass data

Data necessary for calibrating image data to field estimates of
PV mass were collected within three days of satellite overpasses
from five randam points within each of five physiographically sim-
ilar {plant species, soils, topography) paddocks located within the
study area described above (Fig. 1). Only one paddock (#1314)
was used in the cattle grazing trial. Since this model is intended
for rancher application, we clipped aboveground vegetation in pad-
docks using the small frames recommended for estimation of
grassiand phytomass (Vallentine 2001), These data were used to
convert spectral data from units of reflectance to kg phytomass
ha~'. The 25 random points were generated in ERDAS Imagine soft-
ware (Leica Geosystemns GIS and Mapping LLC, Norcross, GA) and
mapped in the field using a GPS with sub-meter resolution
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Landsat 22 June, 2007

ASTER 23 June, 2007

NIR Landsat versus ASTER Spatial Data Comparison
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Fig. 1. lllustration of the paddocks used for spectral data calibration and the paddock used for the cattle trial (#1314) overlaid on the two satellite data sources used to
parameterize two versions of the model. The 30-m Landsat Thematic Mapper (Landsat TM) pixel data for the near infrared band (pw) is depicted on the left and the 15-m
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) pixel data for py is depicted on the right.

(Trimble Model). On June 20, 2007, we clipped one frame (0.25 m?)
at each of the 25 points (leaving 4 cm of stubble). Clippings were
separated into photosynthetically active (PV) and non-photosyn-
thetically active vegetation (NPV) pools in the laboratory, oven-
dried for 48 h at 60°C, and ground using a 1 mm mesh screen.
PV (kg dry matter ha~') was used for TM and ASTER model calibra-
tion. The dried material was analyzed further for forage quality
(methods to follow).

2.4, Forage quality laboratory analyses

Forage quality was determined for dried, ground vegetation col-
lected in the field at each of the 25 points on June 20, with separate
analyses for PV and NPV. Samples were analyzed for C and N using
a combustion analyzer (Carlo Erba Model NA 1500 Series 2 N/C/S
analyzer, CE Elantech, Lakewood, NJ). Forage in vitro dry matter
digestibility (IVDMD) was analyzed using a Daisy" incubator (An-
kom Technology, Fairport, NY) as described by Vogel et al. (1999)
and rumen fluid was collected from two ruminally cannulated beef
heifers that were participating in the grazing trial. Weighted
means were calculated for C/N, IVDMD and CP. for each pasture,
based on the laboratory data for PV and NPV and the proportion
of PV and NPV comprising the canopy on a mass basis.

Total Digestible Nutrient (TDN) is an indicator of forage quality
and therefore can be used to estimate the capacity of a pasture to
support cattle nutritional requirements (National Research Coun-
cil, 2000). Initially, we determined if plant C/N could be used to
estimate TDN/N by performing repeated plant chemical analyses
in the laboratory using plant material collected monthly (June-
September 2007) from five points within each paddock as de-
scribed previously. The mixture of both materials (as collected in
the field) was processed and analyzed. Plant samples were ana-
lyzed for dry matter (AOAC, 1990), N and C (Carlo Erba Model NA
1500 Series 2 N/C/S analyzer, CE Elantech, Lakewood, NJ), and Acid

Detergent Fiber (ADF%) content using the procedures of Goering
and Van Soest (1970) as modified by Vogel et al. (1999) with an
Ankom 200 fiber analyzer (Ankom Technology, Fairport, NY).
TDN was calculated from ADF (Linn and Martin, 1989):

TDN (%) = 0.889 — (ADF% x 0.779). (4)
Laboratory data collected for C/N were regressed on TDN/N data.

The linear regression equation (Fig. 2) was used to estimate TDN
in the nutrient-based grazing capacity model:

TDN (%) = C/N x 1.16 +6.95 x (40 = C/N). (5)

- Plant TDN/N vs. C/N

R?=0.965
604

55 4

50

Plant TDN/N

45 4

40+

35 T T T T
25 30 35 40 45 50

Plant C/N

Fig. 2. Regression of plant total digestible nutrients/nitrogen (TDN/N) on plant
carbon/nitrogen ratio measured in the laboratory from dried and ground field
vegetation data.
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2.5, Nutrient-based grazing capacity model

The grazing capacity model framework (Fig. 3) is similar when
parameterized using TM, ASTER or field data. The goal of the model
is to estimate the number of days geo-located pastures can support

75

a given herd of cattle based on bedy weight and stage of produc-
tion. The model car be conceptually subdivided inte three main
tasiks: (1) process image data (as described previously) to estimate
PV mass, CP, TDN (%), and CPy,,_pv: (2} apply satellite-hased esti-
mates of TDN and TDN recommendations for the herd of interest

Task 1

Regression

Calibrated image 2
coefficients

/

/ / Utilization (%/

Dry Matter Available (Kg ha}
PV_DM or ALL,_DM

HRF
{days kg CP-1}

Days available CP will meet herd
requirements (days pixel)

(kg pixer)

CH ratio TON % in
forage
CP in forage
P, (CPoy o O TPy oy )
(kg pixel-1)
Task 2
TDN % in Average animal Number iny Consumption (%
forage weight Herd
CPr e Herd consumption factor (days kg
Herd Requirement Factor (HRF )
(days kg CP-1}
Task 3
CP in forage
(CP,, ;i OrCP, ay)

Sum of site pixels

Number of days sile
will support herd

Output

i Input /

Fig. 3. Schematic representation of the grazing capacity model, divided into three main tasks.
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based on the National Research Council (2000) to calculate a tem-
porary Herd Requirement Factor {HRF); and (3) calculate the num-
ber of days current forage might support the herd for geo-located
pastures, based on estimated available CP,, v and the HRF (Fig. 3).

Inputs required for Fask 1 are: a calibrated image (with each
band in units of reflectance); MSAVI regression coefficients for esti-
mation of PV mass; and targeted forage utilization (%). Inputs re-
quired for Task 2 are: available TDN in forage (input from Taslk
1}; the number of animal units {(AU) expected to graze a specific
area; average weight of each AU; and animal consumption as a per-
cent of animal weight (National Research Council, 2000). Based on
the Nationai Research Council tabular data, we constructed a iook-
up table which used our calculated TDN and average animal
weight to determine percentage of crude protein required (CPg_req).
This is multiplied by the herd consumption factor (consumption as
percentage of average animal weight muitiplied by the number of
head) to determine the HRF. The HRF does not specify the propor-
tion of photosynthetically or non-photosynthetically active
vegetation:

HRF {Days kg CPy, yoq 1} == [Mass consumed/day + head) — 17CP oq.
(G}

In Taslk 3, forage CPy,,_py (input from Task 1} is multiplied by the HRF
{input from Task 2) to find the number of days CPy,_py will meet
herd nutritional requirements. Pixel data are then layered onto
the geo-located paddock to determine the number of days for which
forage will be available to support the cattle herd. For evaluation
purposes, we output three versions of the model: one based on for-
age estimates derived from TM data (30-m pixels), one based on
forage estimates derived from ASTER data {15-m pixels), and one
based on forage estimates derived from field clippings {paddock
average). Satellite-based indices typically delineate PV (either as
mass, leaf area, or cover), rather than NPV, because spectral re-
sponse in the visible and short-wave infrared is largely due to
absorption and reflectance by photosynthetically active pigments
in the leaf. Depending upon sward structure, stocking rate, feed
availability, etc., cattle may also consume NPV. Therefore, we con-
sidered all three versions, since each could underestimate actuai
grazing capacity because the model does not include estimation
of NPV mass (due to TM and ASTER spectral limitations). The sensi-
tivity of the model to phytomass error was evaluated by determin-
ing how a percent change in PV mass affects the estimated number
of grazing days. We performed a similar analysis to evaluate the
sensitivity of the model to error in CP,.

2.6. Cattle grazing trial

We evaluated actual cattle use on one paddock (#1314) in a
grazing trial. The geographic border of 1314 was surveyed with a
corrected, real-time differential Global Position Systemn (GPS) Bea-
con receiver with an external antenna {Trimble Model GeoXT). AS-
TER and TM pixel sizes are not equal (Fig. 1), yet model version
comparisons required that both sensors represent areas of equal
size to be valid. Therefore, we overlaid ASTER and TM data and cor-
rected the paddock boundaries so that only full pixels of both

ASTER and TM data were included. Four 15-m ASTER pixels were
aligned within each 30-m TM pixel, so the ASTER data contained
four times as many data points as the TM data set {Fig. 1).

The cattle grazing trial was initiated on paddock 1314 after im~
age acquisitions for the purpose of comparing actual cattle utiliza-
fion with the satellite data-driven models. The 28-day trial was
initiated on July 16, 2007 with 30 AUs, consisting of 24 Angus
cow/caif pairs and six 2-year old heifers {average initial body
weight per AU =514 + 69,8 kg). Cattle were weighed at the begin-
ning and end of the trial to determine average daily weight gain.
Forage utilization was estimated by clipping and drying total phy-
tomass (as described previously) just prior to cattle turn out and
just after cattle removal at eight points for paddock 1314 and for
eight points excluded from grazing. The average difference in total
phytomass before and after the 28-day trial was calculated to
determine the proportion of phytomass removed by cattle.

2.7. Data analysis

Average (tstandard deviation) values for CP. and PV mass
(kg ha~'} on paddock 1314 were calculated for TM, ASTER and fetd
estimates. We aiso calculated the margin-of-error asseciated with
coilecting PV mass calibration data on 25 sampie points, based on a
95% confidence interval. A t-test was used on exclosure data hefore
and after the 28-day trial to determine if there was an increase in
phytomass during the trial. We correlated ASTER estimates for
CPy, pv against TM estimates for CPy, py at the same geographic
location using the average of the four ASTER pixels nested within
each TM pixel to determine how CP,, py varied with data source.

3. Results

Satellite estimates of PV mass required field calibration data,
and the field average {(#standard deviation) for ali points was
1790 % 360 kg ha™'. The percentage of PV versus NPV for the can-
opy was, on average, 76%. The margin-of-error associated with
clipping 25 points to estimate PV mass was 9%. Average PV mass
derived from the TM and ASTER sensors for these 25 points (fol-
lowing calibration with field data) was 1906 +61kgha™' and
1886 % 96 kg ha™!, respectively. MSAVI spectral index values for
our standardized field site ranged from 0.65 to 0.75, while MSAVI
for pixels in our study area ranged from 0.25 to 0.45. This spectral
response for both TM and ASTER images and low MSAVI values for
our study area indicate that spectral index saturation was not an
issue. Laboratory analyses performed on clippings at the 25 sampie
points were, on average, 8.4+ 0.74% for CP. and 67 £2.4% for
[VDMD.

Based on the cattle-use trial, the TM and ASTER versions under-
estimated grazing capacity by 4 days while the field version over-
estimated grazing capacity by 1 day. This was calculated according
to the number of days needed to achieve our targeted 50% utiliza-
tion and our actual usage by cattle of 43% over 28 days. Models
parameterized using TM, ASTER and field data indicated we would
meet our targeted utilization in 28, 28 and 33 days, respectively
{Table 1). The pre and post-trial grazing exclosure data indicated

Tabie 1

Grazing capacity model inputs and outputs.

Paddock - Area AU “Average ', “Target “. . Grazing days field . Grazing days ' Grazing days ~.Actual " Actual DL Actual weighs  Aetual t
Coienhay - eattle mass - sutilization < clipping June 20 < ASTER June 230 TM June 22 |, utilization " -grazing . " - gain {kgd"') .\ consumption |
e gy gy L T L e T T g T s T T (g har )

13147190 30 LB 1A B0 T B U e gt T g g s e

Model inputs for grazing capacity estimates and mode! outputs for each version of the maodel {one using field data, one using ASTER data and using TM data) compared with

actual castle utilization and performance.
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Table 2
Phytomass estimates.

Paddock . Field clipping June 20 PV. mass (kg ha” ') ERR TR
: Average+standarcl dewanon B C

(- ASTER June 23 PV.mass (kg ha- b
© Average +standard (levnatznn

- -:_ TM jane 22 PV.mass (kg ha™'}. =
Average * standard c!evmtlon C

1314 2003198 1898 %52

1892+ 62 .

Average (tstandard deviation) for live phytomass (PV mass), based on the field clippings, ASTER, and Landsat-based data for paddock 1314.

Table 3
Forage quality estimates,

Paddock ‘Field clipping June 20 1VDMD (%)
- Average * standard dev:atmn

- Field clipping June 20 CP. (%)

* ASTER June 23 CP, (%) |

M june 22 CP. (%)
.‘\vemge * Gtandard dewatlon

1314687420 812

Average * standard devmnon -

Average + standard dewanon '

69402 . 0202

Average (+standard deviation) for forage quality variables (crude protein and in vitre dry matter digestibility) based on field clippings, ASTER, and TM™ data for paddock 1314,

phytomass did not increase during the trial, so our estimated per-
centage utilization was based on paddock 1314 pre and post-tria
clippings only. If cattle were atlowed to continue grazing at the
same rate, they would have reached our targeted utilization of
50% in 32 days.

Average PV mass estimated from field data for the cattle grazing
trial in paddock 1314 was 2003 200 kg ha™!, while TM and AS-
TER-based PV mass estimates for paddock 1314 were
1898 + 52 kg ha ' and 1892 +62 kg ha™', respectively {Table 2).
Average (P, estimated from field data for paddock 1314 was
8.1+ 1.2% while paddock 1314 TM and ASTER-based averages
were 7.0+ 0.2 and 6.9 £ 0.2, respectively (Table 3). Both TM and
ASTER-based estimates for PV mass and CP, fel! below field-based
estimates by approximately 100 kg PV ha™' and by approximately
1% CP.. The correlation between ASTER and TM for CP,,_py 0N & pix-
ei-by-pixel basis was positive (R =0.49; P < 0.0001), with the abso-
lute difference between sensor data averaging 2.4 kg CPy, py ha™!
(Fig. 4).

A 1% error in estimating PV mass would lower or raise the num-
ber of grazing days by 0.3 daysf or 0.025 days ha~'. The paddock
averages for PV mass for both TM and ASTER versions were 5% less
than the field-based average (Tabie 1). A 5% error in PV mass would
resuit in underestimating grazing capacity by 1.5 days. Similarly, a
1% ervor in CP. would lower or raise the number of grazing days by

TM versus ASTER Pixel-to-Pixel Crude Protein Estimates

145
‘I:‘ 140 »
= . @
g . *
= 1351 . o .
H .
2 > Y .
j ? [
& .o . . .
@ 1301 ) g ™ .
g Py o"’
® & LX)
[&] * L)
= ~.. - - ®
£ 1251 .*
. L 2
120 . T - -
120 126 130 135 140 145

ASTER Crude Protain (kg ha™")

Fig. 4. Scattergram of crude protein mass for photosynthetically active vegetation
{CPy_pv) derived from Landsat Thematic Mapper (Landsat 'TM} and from Advanced
Spaceborne Thermal Emission and Reflection Radiometer {ASTER) images. Data are
the average of four ASTER pixels within one Landsat T™ pixel for paddock 1314,

0.32 days ar 0.027 days ha™*. The paddock average CP, for both TM
and ASTER versions was 14% less than the field-based average
{Table 3). A 14% error in CP, would result in an underestimation
of grazing capacity by 4.5 days. Accordingly, the combined PV mass
and CP. errors would have resulted in underestimating paddock
grazing capacity by 6 days. This G-day approximation of model
sensitivity to both PV mass and CP, in paddock 1314 is greater than
the 4 days observed here. The six-day approximation, however, is
based on comparison with paddock averages from field and labora-
tory data, which are not error-free,

4. Discussion

TM, ASTER and field data collected within 3 days of each other
made it possible to compare model outputs using alternate data
sources for parameterizing a cattle nutrition modet in GIS, Cattle
data as well as all three methods for estimating forage quality
and quantity (TM, ASTER, and field) have been published but have
not been integrated previously to determine small-paddock graz-
ing capacity. Other geospatial grassland assessment programs sup-
port land managers by mapping estimates of pasture growth rate
(http:/fwww.regional.org.aufaufgiaj19/620donald.htm?print=1),
forage production (Grigera et al, 2007), and plant greenness
(http:/{rangeview arizona.edufindex.html) for larger areas at coar-
ser spatial resolutions and with more frequent satellite overpasses.
Here, we complement these programs with an option for estimat-
ing grazing capacity for smaller paddocks {<20 ha) that inciudes
forage quality as well as quantity.

The field-based version of the model estimated grazing capacity
within 1 day {3%) of actual use in the cattle trial, compared to 4
days {12.5%) foi the TM and ASTER-based versions (Table 1). The
sensitivity analysis suggests this was largely due to the underesti-
mation of forage quality and quantity by TM and ASTER, as com-
pared to field clipping estimates. TM and ASTER-based forage
quality estimates approximated laboratory analyses of forage qual-
ity, but they both underestimated CP. by 1% (Table 3). A 1% differ-
ence falls within the previously determined detection limit {Beeri
et al,, 2007; Phillips et al., 2008}, but a 1% difference can nonethe-
less be substantial with respect to cattle autrition, Narrowing the
range of error in CP, estimates may be achieved with aclditional
hyperspectral sensor research (Starks et al, 2006; Beeri et al.,
2007).

This grazing capacity model uses a single inventory and does
not account for changes in forage guantity and quality during the
cattle-use time period. For season-long grazing, additional imagery
and model runs are necessary to confirm or readjust capacity based
on updated conditions {Grigera et al., 2007). This method may be
weli-suited to rest rotation and high intensity-low frequency
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grazing systems. In these systems, utilization and grazing days are
important management factors (Heitschmidt and Taytor, 1991). In
these cases, the compatibility of pixel size and cell size would need
to be considered. For example, 0.5 ha celis may accommodate the
smaller ASTER pixels, whereas TM pixels may require cells >1 ha in
area. Upon completion of grazing for one set of cells, a new model
run would be needed to estimate grazing capacities for additiona,
ungrazed cells.

Finally, forage utilization (%) is a model input that must be ad-
justed according to expert knowledge or historical data for a spe-
cific pasture (Vallentine, 2001). For areas where precipitation
limits production, 50% utilization may not always reflect proper
utilization in dry years (Hacker and Smith, 2007). While 50% forage
utilization should result in 50% of the forage mass remaining at the
end of the grazing period, actual pasture utilization should none-
theless be monitored to ensure pasture-specific issues are not
affecting actual usage. For example, this model assumes all forage
is usable and therefore would over-predict grazing days if a pas-
ture was infested with a noxious weed, requiring adjustment of
forage utilization or removing these areas from the pasture map.
Inclusion of forage quality as well as quantity in our pasture-scale
determination of grazing capacity provides an overview of how
well available forage will meet livestock nutritional requirements.
Idealty, historical data would be available, so that results for the
same geographic area could be evaluated across multiple years.
Continued comparison of model results with actual forage intake
is needed prior fo large-scale application to livestock production
systems.

5. Conclusions

The worldwide need for optimum grassland resource utilization
points toward development of models that synopticaily integrate
real-time forage quality data with livestock performance require-
ments. The nutrient status of multiple pastures is difficult to esti-
mate and is not typically measured in production-based
estimates of grazing capacity. Here, we describe a method for esti-
mating grazing capacity for small paddocks by matching livestock
nutritional requirements with forage quality and quantity 1o sup-
port more timely land management decisions, The model parame-
terized with field data most closely tracked animal use (within 3%},
while modei versions parameterized with TM and ASTER underes-
timated grazing capacity by 12.5%.

This paper describes how we used published cattle nutritional
requirement data and satellite data-based methods to build a mod-
el in GIS to estimate grazing capacity. The model itself is not spa-
tially linked to a specific focation but can be applied to any
grassland of interest, given field and/for satellite-based data. Differ-
ences between model versions parameterized with field versus sa-
tellite-based data were associated with errors in satellite-based
estimates of forage quality and quantity. Since actual cattle use
was only tracked for one paddock, different results would be ex-
pected with a greater number of validation sites.

This model is designed for short-term, multiple-paddock graz-
ing systems and is not a substitute for the land manager. Instead,
it provides an indication of the capacity of specific paddocks to
support Hvestock nutritional requirements, By representing graz-
ing capacity for several paddocks at one time, managers have the
opportunity to select those paddocks that might better meet live-
stock nutritional requirements. Additional model testing is needed
to determine model accuracy at multiple locations and the poten-
tial management benefits derived from parameterizing a cattie
nutrition model using satellite-based, versus field-based, forage
data.
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